

Tetrahedron Letters 46 (2005) 2075-2078

Tetrahedron Letters

Efficient cleavage of carboxylic *tert*-butyl and 1-adamantyl esters, and N-Boc-amines using H₂SO₄ in CH₂Cl₂

Paolo Strazzolini,* Nazareno Misuri and Pierluigi Polese

Department of Chemical Sciences and Technologies, University of Udine, via del Cotonificio 108, I-33100 Udine, Italy
Received 24 December 2004; revised 24 January 2005; accepted 25 January 2005

Abstract—A new procedure for the deprotection of carboxylic *tert*-butyl and 1-adamantyl esters, and N-Boc-amines using H_2SO_4 in CH_2Cl_2 is described. The proposed method is simple, cheap, eco-friendly and represents a valid alternative to existing ones, with special significance in large scale applications. © 2005 Elsevier Ltd. All rights reserved.

tert-Butylation of free carboxylic acids is a widespread procedure for the protection of the carboxyl function, receiving continuous attention in many fields of chemistry. Moreover, this kind of protection found a variety of applications in peptide synthesis, both in the semipermanent masking of the α-carboxyl group of amino acids² and for the purpose of protecting some side chain functions. A similar protection of the carboxyl function is also achieved by formation of 1-adamantyl esters. In the same fashion, the tert-butoxycarbonyl (Boc) group has been widely employed to mask the amino function, finding widespread use in both organic and peptide synthesis.

Numerous methods are presently available for removing either the above mentioned ester protections ^{1a,b} or the *N*-Boc group, ^{5a,b,8} usually based on their easy cleavage by acids, and among them the procedure employing CF₃COOH (TFA), neat or in its concentrated CH₂Cl₂ solution, appears to be of choice. ⁹ Nevertheless, large scale employment of TFA presents a number of drawbacks ¹⁰ and its use in some applications is not acceptable. ¹¹ We have recently published a convenient procedure for selective cleavage of *tert*-butyl and 1-adamantyl esters, ¹² as well as for the removal of *N*-Boc protections, ¹³ employing HNO₃ in CH₂Cl₂. This method proved very efficient, but in some instances, involving oxidation sensitive substrates, the unmasking reaction

Keywords: Sulfuric acid; Dichloromethane; Deprotection; tert-Butyl ester; N-Boc-amine.

failed, giving rise to tarry mixtures.¹³ Therefore, it appeared of potential interest to perform the reaction in the same solvent, but using H₂SO₄ instead of HNO₃ as the acid, in order to avoid the oxidative action of the latter and evaluate the effectiveness of the method.^{10a}

We have found that treating a number of tert-butyl esters (1a-e, Scheme 1, Table 1), prepared from carboxylic acids with different steric properties and potentially reactive functionality, with just the stoichiometric amount of commercial 96% H₂SO₄ in CH₂Cl₂, at rt for 6 h, gave in a smooth reaction the complete deprotection of the corresponding organic acids, which were recovered in very good yields after a simple work up (Table 1). The double bond present in substrate 1d was remarkably left intact, as well as the amide function of the ester 1e. Tricyclo[3,3,1,1^{3,7}]dec-1-vl 2,2-dimethylpropanoate (1-adamantyl pivalate, 1f) reacted similarly under the same conditions, yielding 2,2-dimethylpropanoic acid (2f) in almost quantitative yield. In a typical procedure, a solution of the selected ester (1, 25.0 mmol) in CH₂Cl₂ (12.5 mL) was added dropwise into a chilled, well stirred mixture consisting of 96% H₂SO₄ (12.5 mmol) and CH₂Cl₂ (12.5 mL), and the resulting mixture was stirred for 6 h at room temperature. After this time, the reaction mixture was extracted with 2 M

G-COOR
$$\frac{H_2SO_4}{CH_2Cl_2}$$
 G-COOH

1 R = t-Bu or 1-adamantyl 2

Scheme 1.

^{*}Corresponding author. Tel.: +39 0432 558870; fax: +39 0432 558803; e-mail: strazzolini@dstc.uniud.it

Table 1. Deprotection of tert-butyl and 1-adamantyl esters of carboxylic acids according to Scheme 1

Entry	Substrate	Conversion (%) ^a	Product	Yield (%)b
1	(CH ₃) ₃ CCOO <i>t</i> -Bu (1a) ^{12a}	>99	(CH ₃) ₃ CCOOH (2a)	89
2	PhCH ₂ COO <i>t</i> -Bu (1b) ^{12a}	>99	PhCH ₂ COOH (2b)	98
3	PhCOO t -Bu $(1c)^{12a}$	>99	PhCOOH (2c)	98
4	(E)-PhCH=CHCOO t -Bu (1d) ^{12a}	98	PhCH=CHCOOH (2d)	96
5	PhCH ₂ (AcNH)C _(S) HCOOt-Bu (1e) ¹⁴	>99	PhCH ₂ (AcNH)C _(S) HCOOH (2e)	90
6	(CH ₃) ₃ COO (1f) ¹⁵	>99	(CH ₃) ₃ CCOOH (2f)	96

^a Reported conversions were determined by ¹H NMR, on intact reaction mixtures, after dilution with CH₂Cl₂, washing with 10% aqueous Na₂SO₄, drying over anhydrous Na₂SO₄, evaporation of the solvent, and redissolution in CDCl₃.

NaOH ($2 \times 25 \text{ mL}$); the combined water phase was made acidic by addition of 37% HCl (10 mL), extracted with Et₂O ($2 \times 25 \text{ mL}$), and the combined organic phase washed with 10% aqueous Na₂SO₄, dried over anhydrous Na₂SO₄, and concentrated to dryness, affording the expected free acid (**2**) in almost quantitative yield (Table 1). The use of less than the stoichiometric amount of H₂SO₄ resulted in a marked drop of efficiency, most likely due to the consumption of the acid, captured by forming *tert*-butyl cation with production of the corresponding ester, the latter only slowly decomposing to 2-methylpropene.

The above conditions (Scheme 2) were then tested (Table 2) to perform the deblocking of a number of N-Boc-protected amines (3a–g) and derivatives of amino acids (3h,i). The method proved equally efficient, but a moderate excess of acid (1.5 mol H₂SO₄ per mol of substrate) was required to bring the unmasking reaction to completion, being consumed in neutralizing the formed

Scheme 2.

free amine and compensating some basicity present in the substrates. The reaction was carried out by adding dropwise a solution of the selected N-Boc-amine (3, 4.0 mmol) in CH₂Cl₂ (15 mL) into a chilled, well stirred mixture consisting of 96% H₂SO₄ (6.0 mmol) and CH₂Cl₂ (5.0 mL), and stirring the resulting mixture for 6 h at room temperature. After this time, the reaction mixture was extracted with H_2O (2 × 10 mL), the aqueous phase made alkaline by addition of 4 M NaOH (4.5 mL, 18.0 mmol), treated with solid Na₂SO₄ (1.0 g), and finally extracted with CH₂Cl₂ (2×20 mL). The combined organic phase was washed with 10% aqueous Na₂SO₄ (20 mL), dried over anhydrous Na₂SO₄ and concentrated to dryness, giving the desired free amine (4) in very good yield (Table 2). In the case of N-Bocamino acid amides (3h,i), the final reaction mixture was concentrated to a small volume, the residue washed twice with hexane $(2 \times 10 \text{ mL})$, treated with NaOH $(4.5 \,\mathrm{mL},$ 18.0 mmol), extracted with **EtOAc** $(2 \times 20 \text{ mL})$ and the expected products (4h,i) recovered as described above. Also in this case, the proposed method proved very efficient, being suitable even when applied to oxidation sensitive substrates, ¹³ like **3f** and **3g**, which were smoothly deprotected and the corresponding amines recovered in almost quantitative yields (Table 2).

In conclusion, the present work has shown the advantages of the procedure employing H₂SO₄ in CH₂Cl₂ for the deprotection of carboxylic *tert*-butyl and 1-adam-

Table 2. Deprotection of N-Boc-amines according to Scheme 2

Entry	Substrate	G^1 , G^2	Conversion (%) ^a	Product	Yield (%)b
1	3a ¹³	CH ₂ Ph, H	>99	4a	93
2	$3b^{13}$	CH ₂ Ph, CH ₃	>99	4b	93
3	$3c^{13}$	Ph, H	>99	4c	97
4	$3d^{13}$	Ph, CH ₃	>99	4d	96
5	$3e^{13}$	$(C_6H_4)_m$ -CH ₃ , H	>99	4e	98
6	$3f^{16}$	$(C_6H_3)_{m,m'}$ - $(CH_3)_2$, H	>99	4f	96
7	$3g^{13}$	CH ₃ CH ₃ , H	>99	4 g	98
8	$3h^{17}$	C _(S) H(CONHCH ₂ Ph)CH ₂ Ph, H	>99	4h ^{8,9c,18}	98
9	3i ¹⁹	C _(S) H(CONHCH ₂ Ph)CH ₂ OCH ₂ Ph, H	>99	$4i^{20}$	94

^a Reported conversions were determined by ¹H NMR, on intact reaction mixtures, after dilution with CH₂Cl₂, washing with 10% aqueous Na₂CO₃, drying over anhydrous Na₂SO₄, evaporation of the solvent, and redissolution in CDCl₃.

^b Yields refer to isolated products.

^b Yields refer to isolated products.

antyl esters, as well as *N*-Boc-amines and amino acids derivatives, without affecting additional functions present in the substrates. The proposed method represents a useful simple, cheap, eco-friendly and safe protocol, which is a valid alternative to existing ones, being especially suitable in large scale applications.

Acknowledgements

We are indebted to Professor G. Verardo for MS data collection and to Dr. P. Martinuzzi for recording the NMR spectra. Thanks are due to the University of Udine (F. U. R. D.) for financial support.

References and notes

- (a) Kocienski, P. J. Protecting Groups; Georg Thieme Verlag: Stuttgart (D), 1994; pp 125–129; (b) Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis, 3rd ed.; Wiley: New York, 1999; pp 404–408; (c) Wiener, H.; Gilon, C. J. Mol. Catal. 1986, 37, 45–52; (d) Nagasawa, K.; Yoshitake, S.; Amiya, T.; Ito, K. Synth. Commun. 1990, 20, 2033–2040; (e) Chevallet, P.; Garrouste, P.; Malawska, B.; Martinez, J. Tetrahedron Lett. 1993, 34, 7409–7412; (f) Ravi, D.; Rama Rao, N.; Reddy, G. S. R.; Sucheta, K.; Jayathirtha Rao, V. Synlett 1994, 856; (g) Nagasawa, K.; Ohhashi, K.; Yamashita, A.; Ito, K. Chem. Lett. 1994, 209–212; (h) Stanton, M. G.; Gagnè, M. R. J. Org. Chem. 1997, 62, 8240–8242; (i) Wright, S. W.; Hageman, D. L.; Wright, A. S.; McClure, L. D. Tetrahedron Lett. 1997, 38, 7345–7348.
- (a) Wunsch, E.; et al. In Methoden Der Organischen Chemie, Houben-Weyl; Müller, E., Ed.; G. Thieme: Stuttgart (D), 1974; Vol. XV/1 (Synthese von Peptiden I), pp 390–398; (b) Bodanszky, M. In Principles of Peptide Synthesis; Hafner, K. et al., Ed.; Springer: Heidelberg (D), 1984; Vol. 16, p 78.
- 3. Ref. 2b, pp 120–122 and 128–130.
- Okada, Y.; Iguchi, S. J. Chem. Soc., Perkin Trans. 1 1988, 2129–2136.
- 5. (a) Ref. 1a, pp 192-195; (b) Ref. 1b, pp 518-525.
- 6. (a) Carpino, L. A.; Parameswaran, K. N.; Kirkley, R. K.; Spiewak, J. W.; Schmitz, E. J. Org. Chem. 1970, 35, 3291-3295; (b) Dalla Croce, P.; La Rosa, C.; Ritieni, A. J. Chem. Res. (S) 1988, 346-347; (c) Almeida, M. L. S.; Grehn, L.; Ragnarsson, U. J. Chem. Soc., Perkin Trans. 1 1988, 1905–1911; (d) Ragnarsson, U.; Grehn, L. Acc. Chem. Res. 1991, 24, 285–289; (e) Dieter, R. K.; Dieter, J. W.; Alexander, C. W.; Bhinderwala, N. S. J. Org. Chem. 1996, 61, 2930-2931; (f) Yong, Y. F.; Kowalski, J. A.; Lipton, M. A. J. Org. Chem. 1997, 62, 1540-1542; (g) Shapiro, G.; Marzi, M. J. Org. Chem. 1997, 62, 7096-7097; (h) Dieter, R. K.; Li, S. J. Org. Chem. 1997, 62, 7726-7735; (i) Burkhart, F.; Hoffmann, M.; Kessler, H. Angew. Chem., Int. Ed. Engl. 1997, 36, 1191-1192; (j) Bonini, B. F.; Comes-Franchini, M.; Fochi, M.; Mazzanti, G.; Ricci, A.; Varchi, G. Synlett 1998, 1013–1015; (k) Johnson, C. N.; Stemp, G.; Anand, N.; Stephen, S. C.; Gallagher, T. Synlett 1998, 1025-1027.
- (a) Ref. 2a, pp 117–132; (b) Ref. 2b, pp 90–102; (c) Kaiser,
 E. Sr.; Picart, F.; Kubiak, T.; Tam, J. P.; Merrifield, R. B.
 J. Org. Chem. 1993, 58, 5167–5175.
- Giordano, C.; Gallina, C.; Ottaviano, V.; Consalvi, V.; Scandurra, S. Eur. J. Med. Chem. 1992, 27, 865– 873.

- (a) Bryan, D. B.; Hall, R. F.; Holden, K. G.; Huffman, W. F.; Gleason, J. G. J. Am. Chem. Soc. 1977, 99, 2353–2355;
 (b) Weber, A. E.; Steiner, M. G.; Krieter, P. A.; Colletti, A. E.; Tata, J. R.; Halgren, T. A.; Ball, R. G.; Doyle, J. J.; Schorn, T. W.; Stearns, R. A.; Miller, R. R.; Siegl, P. K. S.; Greenlee, W. J.; Patchett, A. A. J. Med. Chem. 1992, 35, 3755–3773; (c) Obrecht, D.; Bohdal, U.; Broger, C.; Bur, D.; Lehmann, C.; Ruffieux, R.; Schönholzer, P.; Spiegler, C.; Müller, K. Helv. Chim. Acta 1995, 78, 563–580; (d) Pandey, G.; Bagul, T. D.; Sahoo, A. K. J. Org. Chem. 1998, 63, 760–768.
- (a) Houghten, R. A.; Beckman, A.; Ostresh, J. M. Int. J. Peptide Protein Res. 1986, 27, 653–658; (b) Brinkman, H. R., Jr.; Landi, J. J., Jr.; Paterson, J. B., Jr.; Stone, P. J. Synth. Commun. 1991, 21, 459–465.
- 11. Miel, H.; Rault, S. Tetrahedron Lett. 1997, 38, 7865–7866
- (a) Strazzolini, P.; Dall'Arche, M. G.; Giumanini, A. G. Tetrahedron Lett. 1998, 39, 9255–9258; (b) Strazzolini, P.; Scuccato, M.; Giumanini, A. G. Tetrahedron 2000, 56, 3625–3633.
- 13. Strazzolini, P.; Melloni, T.; Giumanini, A. G. *Tetrahedron* **2001**, *57*, 9033–9043.
- Comely, A. C.; Gibson, S. E.; Hales, N. J.; Peplow, M. A. J. Chem. Soc., Perkin Trans. 1 2001, 2526–2531, Prepared in 88% yield, according to Ref. 12b, method B.
- Baldwin, S. W.; Haut, S. A. J. Org. Chem. 1975, 40, 3885–3887.
- 16. Prepared according to Ref. 13. (3,5-dimethylphenyl)carbamic acid 1,1-dimethylethyl ester (3f). White solid (92% yield): mp (from pentane) 93 °C. IR (pellet) ν_{max}: 3360s, br; 2969m, br; 1696s; 1612m; 1523s; 1434m; 1365w; 1279m; 1236m; 1162s; 1078w; 1011w; 1021w; 979w; 847m; 761w; 688w; 618w cm⁻¹. ¹H NMR δ (ppm): 6.99 (app br s, 2 H, Ar–H); 6.71–6.64 (m, 1 H, Ar–H); 6.44 (br s, 1 H, BocNH); 2.28–2.25 (m, 6 H, ArCH₃); 1.51 [s, 9 H, OC(CH₃)₃]. ¹³C NMR δ (ppm): 152.78; 138.58; 138.13; 124.70; 116.20; 80.24; 28.30; 21.31. MS (*T* = 20 °C) *m/z*: 121 (100); 165 (93); 57 (22); 41 (21); 120 (16); 221 (M⁺, <1). Anal. Calcd for C₁₃H₁₉NO₂: C, 70.56; H, 8.65; N, 6.33. Found: C, 70.41; H, 8.69; N, 6.31.
- 17. Hagiwara, D.; Miyake, H.; Morimoto, H.; Murai, M.; Fujii, T.; Matsuo, M. *J. Med. Chem.* **1992**, *35*, 3184–3191, Prepared in 76% yield by treating a chilled CH₂Cl₂ (50 mL) solution of commercial *N*-Boc-L-phenylalanine (10.0 mmol) and (phenylmethyl)amine (10.0 mmol), with a CH₂Cl₂ (20 mL) solution of dicyclohexylcarbodiimide (DCC, 10.0 mmol), and stirring 24 h at rt. The reaction mixture was then filtered in order to separate formed DCU, concentrated to dryness, the residue redissolved in EtOAc (60 mL) and washed with 0.1 M HCl (50 mL), 10% aqueous Na₂CO₃ (50 mL) and 10% aqueous Na₂SO₄ (50 mL). The organic phase was finally dried over anhydrous Na₂SO₄, filtered, concentrated to dryness and the residue crystallized from hexane.
- Adrian, F.; Burguete, M. I.; Fraile, J. M.; Garcia, J. I.; Garcia, J.; Garcia-España, E.; Luis, S. V.; Mayoral, J. A.; Royo, A. J.; Sanchez, M. C. Eur. J. Inorg. Chem. 1999, 2347–2354.
- 19. Prepared essentially as **3h**. [(1*S*)-2-oxo-1-[(phenylmethoxy)methyl]-2-[(phenylmethyl)amino]ethylcarbamic acid 1,1-dimethylethyl ester (**3i**). White solid (54% yield): mp (from hexane) 79 °C; $|\mathbf{z}|_D^{20} + 50.0$ (c 1.0; CHCl₃). IR (pellet) v_{max} : 3334s, br; 2930m, br; 1686s; 1659s; 1529s; 1456w; 1368w; 1304m; 1241m; 1170m; 1109w; 1021w; 873w; 739w; 697m cm⁻¹. ¹H NMR δ (ppm): 7.36–7.17 (m, 10H, Ar–H); 6.87 (t, J = 5.5 Hz, 1H, BnNH); 5.48 (d, J_{MX} = 6.3 Hz, 1H, BocNH); 4.53 (d, J_{AB} = 11.7 Hz, 1H, PhC H_2 O); 4.47 (d, J_{AB} = 11.7 Hz, 1H, PhC H_2 O); 4.44 (d,

J = 5.8 Hz, 2H, PhC H_2 NH); 4.33 (br m, 1H, CH); 3.92 (dd, J_{AB} = 9.2, J_{BX} = 4.0 Hz, 1H, CHC H_2); 3.60 (dd, J_{AB} = 9.2, J_{AX} = 6.2 Hz, 1H, CHC H_2); 1.42 [s, 9H, OC(C H_3)₃]. ¹³C NMR δ (ppm): 170.11; 155.32; 137.85; 137.30; 128.48; 128.33; 127.73; 127.61; 127.38; 127.24; 80.08; 73.31; 69.92; 54.05; 43.31; 28.13. MS (T = 50 °C) m/z: 91 (100); 57 (33); 150 (25); 106 (17); 41 (11); 384 (M $^+$, <1). Anal. Calcd for C₂₂H₂₈N₂O₄: C, 68.73; H, 7.34; N, 7.29. Found: C, 68.54; H, 7.35; N, 7.27.

20. (S)-2-amino-3-(phenylmethoxy)-N-(phenylmethyl)propanamide (**4i**). Yellow paste (94% yield): mp, n.d.; $[\alpha]_D^{20}$ +5.0 (c 1.0; CHCl₃). IR (pellet) v_{max} : 3323s, br; 2928m, br; 1664s; 1624s; 1455m; 1429w; 1362w; 1248m; 1095s; 1030w;

868w; 739m; 701m; 604w; 466w cm⁻¹. ¹H NMR δ (ppm): 7.79 (br s, 1 H, BnN*H*); 7.39–7.21 (m, 10 H, Ar–*H*); 4.53 (s, 2 H, PhC*H*₂O); 4.45 (dd, J = 6.0 Hz, $J_{\rm all}$ = 1.3 Hz, 2H, PhC*H*₂NH); 3.75 (part A of an ABC spin system, $J_{\rm AB}$ = 9.1, $J_{\rm AC}$ = 6.7 Hz, 1H, CHC*H*₂); 3.73 (part B of an ABC spin system, $J_{\rm AB}$ = 9.1, $J_{\rm BC}$ = 3.8 Hz, 1H, CHC*H*₂); 3.62 (part C of an ABC spin system, $J_{\rm AC}$ = 6.7, $J_{\rm BC}$ = 3.8Hz, 1H, C*H*); 1.81 (br s, 2 H, N*H*₂). ¹³C NMR δ (ppm): 172.59; 138.25; 137.73; 128.56; 128.38; 127.73; 127.70; 127.54; 127.27; 73.23; 72.29; 54.96; 43.05. MS (T = 50 °C) m/z: 150 (100); 91 (90); 43 (16); 151 (13); 92 (8); 284 (M⁺, <1). Anal. Calcd for $C_{17}H_{20}N_2O_2$: C, 71.81; H, 7.09; N, 9.85. Found: C, 71.75; H, 7.11; N, 9.83.